Passive infrared detectors
A passive infrared detectors used to detect motion.
The passive infrared (PIR) motion detector is one of the most common sensors found in household and small business environments. It offers affordable and reliable functionality. The term passive refers to the fact that the detector does not generate or radiate its own energy; it works entirely by detecting the heat energy given off by other objects.
Strictly speaking, PIR sensors do not detect motion; rather, they detect abrupt changes in temperature at a given point. As an intruder walks in front of the sensor, the temperature at that point will rise from room temperature to body temperature and then back again. This quick change triggers the detection.
PIR sensors may be designed to be wall or ceiling mounted, and come in various fields of view, from narrow "point" detectors to 360 degree fields. PIRs require a power supply in addition to the detection signalling circuit.
Photo-electric beams
Photoelectric beam systems detect the presence of an intruder by transmitting visible or infrared light beams across an area, where these beams may be obstructed. To improve the detection surface area, the beams are often employed in stacks of two or more. However, if an intruder is aware of the technology's presence, it can be avoided. The technology can be an effective long-range detection system, if installed in stacks of three or more where the transmitters and receivers are staggered to create a fence-like barrier. Systems are available for both internal and external applications. To prevent a clandestine attack using a secondary light source being used to hold the detector in a 'sealed' condition whilst an intruder passes through, most systems use and detect a modulated light source.
Glass break detection
The glass break sensor may be used for internal perimeter building protection. Glass break acoustic detectors are mounted in close proximity to the glass panes and listen for sound frequencies associated with glass breaking.
Seismic glass break detectors, generally referred to as "shock sensors" are different in that they are installed on the glass pane. When glass breaks it produces specific shock frequencies which travel through the glass and often through the window frame and the surrounding walls and ceiling. Typically, the most intense frequencies generated are between 3 and 5 kHz, depending on the type of glass and the presence of a plastic interlayer. Seismic glass break detectors “feel” these shock frequencies and in turn generate an alarm condition.
Window foil is a less sophisticated, mostly outdated, detection method that involves gluing a thin strip of conducting foil on the inside of the glass and putting low-power electrical current through it. Breaking the glass is practically guaranteed to tear the foil and break the circuit.
Smoke, heat, and carbon monoxide detectors
Heat detection system
Most systems may also be equipped with smoke, heat, and/or carbon monoxide detectors. These are also known as 24 hour zones (which are on at all times). Smoke detectors and heat detectors protect from the risk of fire and carbon monoxide detectors protect from the risk of carbon monoxide. Although an intruder alarm panel may also have these detectors connected, it may not meet all the local fire code requirements of a fire alarm system.
Traditional smoke detectors are technically ionization smoke detectors which "create an electric current between two metal plates, which sound an alarm when disrupted by smoke entering the chamber. Ionization smoke alarms can quickly detect the small amounts of smoke produced by fast flaming fires, such as cooking fires or fires fueled by paper or flammable liquids." A newer, and perhaps safer type is a Photoelectric smoke detector. It contains a light source in a light-sensitive electric sensor, which is positioned at a 90-degree angles to the sensor. "Normally, light from the light source shoots straight across and misses the sensor. When smoke enters the chamber, it scatters the light, which then hits the sensor and triggers the alarm. Photoelectric smoke detectors typically respond faster to a fire in its early, smoldering stage – before the source of the fire bursts into flames."
Vibration (shaker) or inertia sensors
Strain-sensor cable installed on a chain-link/barbed-wire fence
These devices are mounted on barriers and are used primarily to detect an attack on the structure itself. The technology relies on an unstable mechanical configuration that forms part of the electrical circuit. When movement or vibration occurs, the unstable portion of the circuit moves and breaks the current flow, which produces an alarm. The technology of the devices varies and can be sensitive to different levels of vibration. The medium transmitting the vibration must be correctly selected for the specific sensor as they are best suited to different types of structures and configurations.
A rather new and unproven type of sensors use piezo-electric components rather than mechanical circuits, which can be tuned to be extremely sensitive to vibration.
This buried security system is based on the Magnetic Anomaly Detection principle of operation. The system uses an electromagnetic field generator powered by two wires running in parallel. Both wires run along the perimeter and are usually installed about 5"/12cm apart on top of a wall or about 12"/30cm below ground. The wires are connected to a signal processor which analyzes any change in the magnetic field.
This kind of buried security system sensor cable could be embedded in the top of almost any kind of wall to provide a regular wall detection ability, or can be buried in the ground. They provide a very low false alarm rate, and have a very high chance of detecting real burglars. However, they cannot be installed near high voltage lines, or radar transmitters.
A passive infrared detectors used to detect motion.
The passive infrared (PIR) motion detector is one of the most common sensors found in household and small business environments. It offers affordable and reliable functionality. The term passive refers to the fact that the detector does not generate or radiate its own energy; it works entirely by detecting the heat energy given off by other objects.
Strictly speaking, PIR sensors do not detect motion; rather, they detect abrupt changes in temperature at a given point. As an intruder walks in front of the sensor, the temperature at that point will rise from room temperature to body temperature and then back again. This quick change triggers the detection.
PIR sensors may be designed to be wall or ceiling mounted, and come in various fields of view, from narrow "point" detectors to 360 degree fields. PIRs require a power supply in addition to the detection signalling circuit.
Microwave detectors
This device emits microwaves from a transmitter and detects any reflected microwaves or reduction in beam intensity using a receiver. The transmitter and receiver are usually combined inside a single housing (monostatic) for indoor applications, and separate housings (bistatic) for outdoor applications. To reduce false alarms this type of detector is usually combined with a passive infrared detector or "Dualtec" alarm.Microwave detectors respond to a doppler shift in the frequency of the reflected energy, by a phase shift, or by a sudden reduction of the level of received energy. Any of these effects may indicate motion of an intruder.Photo-electric beams
Photoelectric beam systems detect the presence of an intruder by transmitting visible or infrared light beams across an area, where these beams may be obstructed. To improve the detection surface area, the beams are often employed in stacks of two or more. However, if an intruder is aware of the technology's presence, it can be avoided. The technology can be an effective long-range detection system, if installed in stacks of three or more where the transmitters and receivers are staggered to create a fence-like barrier. Systems are available for both internal and external applications. To prevent a clandestine attack using a secondary light source being used to hold the detector in a 'sealed' condition whilst an intruder passes through, most systems use and detect a modulated light source.
Glass break detection
The glass break sensor may be used for internal perimeter building protection. Glass break acoustic detectors are mounted in close proximity to the glass panes and listen for sound frequencies associated with glass breaking.
Seismic glass break detectors, generally referred to as "shock sensors" are different in that they are installed on the glass pane. When glass breaks it produces specific shock frequencies which travel through the glass and often through the window frame and the surrounding walls and ceiling. Typically, the most intense frequencies generated are between 3 and 5 kHz, depending on the type of glass and the presence of a plastic interlayer. Seismic glass break detectors “feel” these shock frequencies and in turn generate an alarm condition.
Window foil is a less sophisticated, mostly outdated, detection method that involves gluing a thin strip of conducting foil on the inside of the glass and putting low-power electrical current through it. Breaking the glass is practically guaranteed to tear the foil and break the circuit.
Smoke, heat, and carbon monoxide detectors
Heat detection system
Most systems may also be equipped with smoke, heat, and/or carbon monoxide detectors. These are also known as 24 hour zones (which are on at all times). Smoke detectors and heat detectors protect from the risk of fire and carbon monoxide detectors protect from the risk of carbon monoxide. Although an intruder alarm panel may also have these detectors connected, it may not meet all the local fire code requirements of a fire alarm system.
Traditional smoke detectors are technically ionization smoke detectors which "create an electric current between two metal plates, which sound an alarm when disrupted by smoke entering the chamber. Ionization smoke alarms can quickly detect the small amounts of smoke produced by fast flaming fires, such as cooking fires or fires fueled by paper or flammable liquids." A newer, and perhaps safer type is a Photoelectric smoke detector. It contains a light source in a light-sensitive electric sensor, which is positioned at a 90-degree angles to the sensor. "Normally, light from the light source shoots straight across and misses the sensor. When smoke enters the chamber, it scatters the light, which then hits the sensor and triggers the alarm. Photoelectric smoke detectors typically respond faster to a fire in its early, smoldering stage – before the source of the fire bursts into flames."
Vibration (shaker) or inertia sensors
Strain-sensor cable installed on a chain-link/barbed-wire fence
These devices are mounted on barriers and are used primarily to detect an attack on the structure itself. The technology relies on an unstable mechanical configuration that forms part of the electrical circuit. When movement or vibration occurs, the unstable portion of the circuit moves and breaks the current flow, which produces an alarm. The technology of the devices varies and can be sensitive to different levels of vibration. The medium transmitting the vibration must be correctly selected for the specific sensor as they are best suited to different types of structures and configurations.
A rather new and unproven type of sensors use piezo-electric components rather than mechanical circuits, which can be tuned to be extremely sensitive to vibration.
- pros: Very reliable sensors, low false alarm rate and middle place in the price range.
- cons: Must be fence mounted. The rather high price deters many customers, but its effectiveness offsets its high price. Piezo-electric sensors are a new technology with an unproven record as opposed to the mechanical sensor which in some cases has a field record in excess of 20 years.
This buried security system is based on the Magnetic Anomaly Detection principle of operation. The system uses an electromagnetic field generator powered by two wires running in parallel. Both wires run along the perimeter and are usually installed about 5"/12cm apart on top of a wall or about 12"/30cm below ground. The wires are connected to a signal processor which analyzes any change in the magnetic field.
This kind of buried security system sensor cable could be embedded in the top of almost any kind of wall to provide a regular wall detection ability, or can be buried in the ground. They provide a very low false alarm rate, and have a very high chance of detecting real burglars. However, they cannot be installed near high voltage lines, or radar transmitters.
Connect us at
Wrote time: 2013 December 3rd
Written by: Chinapst Team.
Viewed Times: 3869 Hits
Written by: Chinapst Team.
Viewed Times: 3869 Hits
FAQ
- Home Alarm System FAQ
- What is a home alarm system
- What are alarm sensors
- what is Learning code&fixed code
- Why should I buy alarm system
- How to select alarm system
- How to install alarm system
- Other FAQs for Home Alarm
- CCTV System FAQ
- What is CCTV System
- What is HD-SDI Camera
- CIF, D1 And 960H DVR
- CCTV Camera Lens Calculation
- What is Video Baluns
- What is P2P?
- What is HDCVI?
- What is POE?
- Other FAQs for CCTV System
- What is AHD Camera
- Video Door Phone FAQ
- GPS Trackers FAQ
- Secuirty & Protection Industry
- Plug, TV System, GSM freq Table